Post graduate Exam (Basic Engineering Sciences) **Branch: Engineering Mathematics (Master 600)**

	Manafia University		Subject: Integral E
- 1	Menofia University		Code: BES 625
	Faculty of Engineering	Minoufia University	Time Allowed: 3 ho
	Academic Year: 2016-2017		
	Department: Basic Eng. Sci.		Date: 14 / 1 / 2017
	Department. Dasie Eng. Sei.		Max Marks: 100

Equations ours

Answer all the following questions:

(A) State whether of the following integral equations are (Voletra IE or Fredholm 0.1IE), (First kind or Second kind), (homogenous or non-homogenous):

•
$$f(x) = \int_{a}^{b} k(x,s)\phi(s)ds$$
 • $\phi(x) = \sin(x) + \lambda \int_{0}^{\pi/2} \cos(x^{2}s)\phi(s)ds$

(B) Using the recursion series method solve the following IE.

$$\phi(x) = x + \lambda \int_{0}^{2} \phi(s) ds$$

(C) Find the first two terms of the Neumann series for the equation:

$$\phi(x) = \sin(x) + \lambda \int_{0}^{\pi/2} \cos(x^2 s) \phi(s) ds$$

(D) Solve the following equations using degenerate kernels method:

$$\phi(x) = x^2 + \lambda \int_0^1 x^3 s^2 \phi(s) ds$$

(E) Find the I.V.P of u''(y) + yu'(y) + 2u(y) = 0 Subject to $u(0) = \alpha$, $u'(0) = \beta$, as a voletra IE?

Q.2

(A) Consider the IE $f(x) = g(x) + \lambda \int \sin(x - y) f(y) dy$ Find:

- 1) The values of (λ) for which it has a unique solution.
- 2) The solution in this case

3) The resolvent kernel

4) The values of (λ) for which the solution is not unique.

(B) Write the Voletra IE for the following O.D.E. V

$$''+\omega^2 y = 0$$
, $y(0) = 0$, $y'(0) = 1$

(C) Using the resolvent kernel method to solve the following IE.

$$g(x) = \cos(2x) + \int_{0}^{2\pi} \sin(x)\cos(s)g(s)ds$$

(D) Convert the following IE into (O.D.E) and solve it:

$$g(x) = \sin(x) + \int_{0}^{x} \sin(x-s)g(s)ds$$

[Q.2 (50 mark)]

[Q.1 (50 mark)]

Good luck

Dr. M.A. El-Shorbagy